
INTEGRATION OF COUPLED NONLINEAR EQUATIONS IN 

BOUNDARY- LAYER THEORY WITH SPECIFIC 

REFERENCE TO HEAT TRANSFER NEAR THE 

STAGNATION POINT IN THREE-DIMENSIONAL FLOW 
A. A. HAYDAY* and D. A. BOWLUS? 

(Received 1 October 1965 and in revisedform 13 April 1966) 

Abstract-Equations ofmotion and energy governing a general three-dimensional flow ofan incompressible 
fluid near a stagnation point are integrated analytically. Local skin friction and heat transfer are deter- 
mined when the surface is isothermal. Whenever possible, these results are compared with available 
numerical solutions and found to be highly accurate. They show that the asymptotic method of solution 
of the boundary-layer equations retains its accuracy when applied to a system of coupled nonlinear 

equations, proper care being taken in summing divergent series by Euler’s method. 

NOMENCLATURE Zi, = (u/v)*, dimensioniess coordi- 
constants related to X, y velocity nate in the direction of local 
components of irrotational flow, normal. 
equation (2.9); 
geometric parameter, c = b/a; 

Greek symbols 

dimensionless velocity functions, 
r9 II, i-7 local orthogonal coordinate 

equation (2.11) ; 
system (different from x. y, zl; 

coefficients related to elements of 
V, kinematic viscosity; 

length in an orthogonal system, 
p 
r: 

density ; 

i-l, 2, 3 ; 
an independent variable, equa- 

static pressure ; 
tion (2.29); 

stagnation point on surface S, 
0, dimensionless temperature; 

origin of coordinate system; 
equation (2.13). 

Prandtl number ; Subscripts 
surface ; W, refers to surface values ; 
temperature ; 00, refers to values at edge of bound- 
x, y, z velocity components in the ary layer. 
boundary layer ; 
X, y velocity components of the 
main stream ; 

1. INTRODU~ION 

local orthogonal coordinate 
MEKSYN has shown in a series of papers that the 

system on S ; 
asymptotic method of solution of the boundary- 
layer equations offers decided advantages over 

* Consultant, U.S. Missile Command. Redstone Arsenal. others; while approximate, this analytical and 
Alabama. U.S.A. rather general approach to the integration of the 

t Research Scientist, Army Missile Command, Hunts- 
ville, Alabama. Now at Department of Mechanical Engineer- 

equations of motion and energy has proved to 

ing. The Pennsylvania State University, University Park, yield’ highly accurate results, such accuracy 
Pennsylvania. being assessed by direct comparison with the 
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corresponding numerical solutions. Following 
up the basic work* [l, 21, Meksyn has success- 
fully applied the procedure to determine the 
flow about an elliptic cylinder [3] and retarded 
incompressible flow past a semi-infinite plate [4] ; 
a simple example of a compressible flow is 
discussed in [S]. An improvement of the method 
is contained in [6]. In his later papers [7, 81, 
Meksyn considered flows with variable physical 
properties demonstrating that (at least for simple 
types of property variations) the asymptotic 
method retains its accuracy there as well. 

One purpose of this paper is to indicate the 
accuracy of the asymptotic method in solving 
systems. of nonlinear differential equations in 
contrast, for example, to [l, 21 that deal with a 
single equation of the Falkner-Skan type. 
Partly for this reason and in order to have a 
ready comparison with corresponding numerical 
solutions, we consider a general three- 
dimensional flow of a viscous incompressible 
fluid in the vicinity of a stagnation point on a 
regular surface S. Numerical solutions providing 
the standards for accuracy are due to Howarth 

WI. 
Recent interest in stagnation point heat 

transfer has provided the motivation for extend- 
ing the work by considering the energy equation 
as well. The known solutions for plane and 
axisymetric flows are two special cases covered 
herein from a more general point of view. 

II. ANALYSIS 

1. Basic equations and the associated boundary 
value problems 

Consider a steady three-dimensional laminar 
flow of an incompressible viscous fluid over a 
regular surface S. Dissipation effects are assumed 
to be negligible and all physical properties of 
the fluid are taken as constant. Under these 
conditions, the boundary layer equations ex- 
pressing the principles of conservation of mass, 

* The reader may also wish to consult Meksyn’s book [9] 
containing a more complete bibliography of pertinent 
papers than that given herein. 

linear momentum and energy in a body- 
oriented orthogonal coordinate frame take the 
form 

$ (h,u) + $ (h, v) + hIh, $ = 0, (2.1) 

u au v at4 i?U uv ahI -~ --+--+“jjf+ h,h+, + 
vz ah2 

h, at h,aq hlhz X 

I ap a% = ---++p 
,4 at (2.2) 

u au v au au 112 ahI 

h,z+7;2&+W@-hlh2 all + 

uv iih, 

hlhz X 

= _L!!+vd2v 
ph, all x2’ 

(2.3) 

u aT v aT aT v a2T 
--++-++w,=-_ 

h at h, a9 a4 PV a4 
(2.4) 

where 5. q are coordinate curves on S and cp 
is measured in the direction of the local normal 
positive outward; the corresponding velocity 
components are u, II, w and h,, h2, h3 are the 
usual coefficients related to a length element. 
T, p, p, v and Pr denote respectively the tem- 
perature, pressure, density, kinematic viscosity 
and the Prandtl number. 

Now, it may be easily shown [lo] that in the 
vicinity of P = (0, 0, 0)---a stagnation point on 
S-the system (2.1j(2.4) may be replaced with 

_+a”+a”_o au 
ax ay ai ’ 

(2.5) 

au au au au au a% 
uax+v-+w~=uu(!x+“-+v-’ ay 84 ay a4 

(2.6) 

au au av av 2 ug+v-+w-=ug-+vc ay ac ay ap 

(2.7) 

aT aT aT v a2T 
u-+v-+w-=---,-, 

ax ay ai Pr ay (2.8) 

where the new coordinate axes Px, Py (obtained 
by rotating P<, Pq) are so chosen that the 
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irrotational mainstream has the components 

U = ax, V = by, (2.9) 

a, b being constants. In other words, the flow 
near the stagnation point may be computed as 
if the surface were a plane, (x, y, [) forming a 
suitable Cartesian coordinate frame. 
Accordingly, we shall henceforth confine our 
attention to the system (2.5H2.8) subject to the 
following boundary conditions : 

u(x, y, 0) = u(x, y, 0) = w(x, y, 0) = 0, 
T(x, y, 0) = T, = const. 

1 
lim u(x, y, [) = U, lim v(x, y, [) = 
5-m 5-m 

lim T(x, y, z) = T, = const. 
5+m 

We seek solutions where u, u are of the form 

u = axf’(z), u = byg’(z) ; (2.11) 

z = (a/v)*l is a new independent variable and 
’ s djdz. 

Equation (2.5) and the boundary conditions 
(2.10) imply that a compatible representation for 
w is 

(2.12) 

Introducing a new dependent variable 

T-T e=----.z 
T, - Tm 

(2.13) 

and using (2.1 l), (2.12), it follows from (2.6H2.8) 
that 

f”’ + (f+ cg)f”’ =f” - 1, (2.14) 

g”’ + (f + cg)g” = c(gfZ - l), (2.15) 

et’ + h(f + cg) 8’ = 0, (2.16) 

where c = b/a is a parameter. (Without loss of 
generality we may limit our consideration to the 
range 0 d c d 1). Of course, (2.16) implies that 
e = e(z) only. 

The boundary conditions corresponding to 

(2.10) are : 

f(0) =f’(o) = g(0) = g’(0) = 0, 
e(0) = 1; 

limf’(z) = 1, lim g’(z) = 1, (2.17) 
z-rm .?+a, 

lim 8(z) = 0. 
z+m 

The system (2.14H2.17) has several interesting 
properties. We note first that for any given 
value of the parameter c, a solution (2.14H2.17) 
in fact satisfies the full Navier-Stokes equations 
expressed in a Cartesian coordinate system.* 
[To see this, observe that (2.14H2.17) remain 
unchanged when v V’u, v V2v and vJPr V2T 
replace respectively the last three terms on the 
right-hand sides of (2.6), (2.7) and (2.8).] When 
c = 1, clearly f = g and (2.14H2.17) give the 
solution for a stagnation point flow on a body 
of revolution. 

If c = b = 0, we recover the classical two- 
dimensional flow. The situation is different if in 
(2.14H2.16) we take the limit as c approaches 
zero. The resultant equations, 

f”’ + ff” = f” - 1, 

g”’ + fg” = 0, 

are then identical to those governing the flow 
near the stagnation point (line) on a circular 
cylinder, unbounded in the y-direction with its 
axis inclined to the mainstream at angle 
a = arctan V/U. (Because our procedure is 
formal, there is no reason to expect that V 
is of the form (2.9). In fact V is constant.) 
Observe that the chordwise flow is unaffected 
by the spanwise motion (the g-flow). This 
situation typifies the so-called “independence 
principle” exploited for example in the papers 

*. We have an immediate generalization of the well 
known two-dimensional case. The potential flow is now 
U = ax, V = by, W = - (a f b)z and the solutions of the 
equations of motion, being of the boundary-layer type, 
join this flow (up to the displacement effect) at infinity. The 
i-component of the momentum equation determines then 
the c-dependence of the pressure. 



418 A. A. HAYDAY and D. A. BOWLUS 

by Sears [ll] and Gijrtler [12]. Finally, the where 
temperature field is independent of the g-flow 
and formally identical to it when Pr = 1. F(z) E 1 (f + cg) dz’. 

0 

(2.22) 

2. Integration of the transformed equations of It follows now from (2.20), (2.21) that f”. g” 
motion are of the form 

We turn now to the integration of the coupled 
nonlinear one parameter system (2.14), (2.15) 

f” = e-r 4(z), g” = eCF k(z), (2.23) 

subject to (2.17). The functions f, g are re- where 
presented by the series cu 

00 

f(z) = $z’, 
c. 

m b 

c. 

4(z) = :z: 
c. 

lc(z) = 
c 

m hzfl (3.24) 
g(z) = ; zn, (2.18) n! - 

n=O n=O 
n=2 n=2 are “slowly varying” functions; the latter is 

the boundary conditions onf, g suggesting that implied by the asymptotic solutions of (2.14) 
both start with n = 2. Upon substituting (2.18) (2.15). The coefftcients a,, /I,, are obtained in a 
into (2.14) (2.15) and collecting powers of z 
we find the first few coefftcients : 

a2 = A, a3 = -1, a4 = 0, a5 = (A2 - cAB), 

b, = B, b3 = -c, b4 = 0, b, = -(AB - cB2L. . . 

To obtain further terms it is convenient to use the recursive formulae 

[ 

(k - 3)(k - 4) _ a3ak_4 (k - 4)(k - 5) 1.2.1 
ak = (k - 3)! -a2ak-3 

2!(k - 3)! 3!(k _ 4)! - “‘ak-3a2(k - 3)!2! 

(k - 3)(k - 4) cb a _ (k - 4)(k - 5) 1.2.1 
- Cb,a,_ 3 

2!(k- 3)! - 3 k 4 3!(k -4)! - .” cbk-3a2 (k _ 3)12! (2.19) 

2(k - 3) 
+ a2ak-3 2!(k _ 3)! + a3ak-4 

3(k - 4) 
+ ...ak-3a2 

(k - 3).2 

3!(k - 4)! (k - 3)!2! 1 
and 

(k - 3)(k - 4) (k - - 5) 1.2.1 bk 4)(k = (k - 3)! a b _ 
2!(k- 3)! - 3 k 4 3!(k-4)! -” .ak-3b2 (k _ 3)!2! 

- cb,b,_ 3 (k - 3’(k - 4, - cb3bk_4(k - 4)(k - 5’ - . . cbk_3b2 (k1i23;;, 
2!(k - 3)! 3!(k - 4)! * . 

2(k 3)! 3(k - 4) (k - - 
+ cb2bk_3 

3) 2 
2 !(k 3)! + cb3bk-4 - 3 !(k _ 4)! + . . cb,-,b, tk 3j!2! 1 7 _ 

valid for k 2 4. 
We consider for the moment (2.14), (2.15) formally as a linear system for f”. 

f”(z) = A e-F”’ _ e-F(z) d (1 - f”) e@‘) dz ‘, 

g”(z) = B ,-F(2) _ ,-F(z) i d c(1 - 9”) eF(“) dz’. 

g” and hence write 

(2.20) 

(2.21) 
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straightforward way from (2.23) and (2.18). 
To get CI, we write 

Co co c n(n - 1) n-2 a 

an!z = n c -1 Zn 

n! 
#I=2 n=O 

00 
(2.25) 

x exp - 
Cc 

(a, + cb,) & z”+ ’ , . 1 
II=2 

expand both sides and compare powers of z. 
The results are 

a0 = a, - A, 

a, = a3 = - 1, 

a2 = a4 = 0, 
(2.26) 

a3 = a5 + ao(a2 + cb,) = 2A2, 

a4 = a6 + $ ar(az + 4) + a&3 + cb3) = 

-(7A + CB), 

where the last equalities follow from (2.19). 
Similarly, expressions for /3,,, are found to be 

fro = b, = B, 

fil = b3 = -c, 

& = b, = 0, 

P3 = b, + Po(a2 + cb,) = 2cB2, 
(2.27) 

p4 = b, + $fil(a2 + cb,) + flo(a3 + cb,) = 

-(7Bc2 + AC). 

The velocity field is deduced by integrating 
(2.23) which amounts to the evaluation of the 
integrals 

f’ (z) = d e-F(z’)+(z’ ) dz’, 

g’(z) = [e-F(Z’) K(Z)) dz’. (2.28) 

This is done by the method of steepest descent. 

The integrals (2.28) are transformed as follows: 
we set 

F(z) = z3 2 .c,z” = T, (2.29) 
m=O 

express z as a series in 

co 

z= c All T3(m+ 1) 

m+l 
(2.30) 

m=O 

and hence obtain 

f’ = ie-‘&z)$dr: 
J 
0 

g’ = e-"K(z) g,dr: 
s 

(2.31) 

0 

With 

cc 

c d, P13, 

m=O 

there follow the desired forms of the integrals, 

f’ = [ e-“$-* 2 d,.r”@dz: 
m=O 

g’ = 6 e-‘i-* f e,,, Zfm13dT. (2.32) 
m=O 

The latter are evaluated in terms of incomplete 
gamma functions ; for each value of c, the 
quantities A, B are obtained from (2.32) and the 
conditions lim f’(z) = 1, lim g’(z) = 1, that is, 

z+m Z-+a, 
simultaneous algebraic equations 

1 = 2 d, r[(m + 1)/3], 
m=O 

1 = f e, r[(m + 1)/3], (2.33) 
m=O 

for A, B with c as a parameter. Of course, {d,}, 
{e,,,} must be expressed as functions of A, B and 
c. For what follows, it shall be convenient to 
deduce at this point the appropriate expressions 
for {cm}, {A,,,} as well. 
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The c,‘s are determined by 
co = 31; (A + CB), 

z3~c~zm=iE(~~“+c~i.)dz, ‘l 

m=O 0 n=O 

cr = -3 (1 + c2), 

an obvious consequence of (2.18), (2.22) and 
c2 = 0, 

(2.29). Straightforward computations yield 
(2.35) 

co = & (a2 + cb,), Cl = $3 + cb,),..., 

c3 = ; (A - CB)2, 

1 
c, = 7; [A(4 - 6c + 4c2 - 3c3) 

c, = (m + 3)! (%I+2 + hn+2)7 (2.34) ’ 
+ B(4c - 6c2 t 4c3)]. 

and, since a,, b, are known in terms of A, B, it 
follows that 

The A,,,% are coefficients of zm in the expression 

(co + crz + c2z2 + . .)-+(m+l).* (2.36) 

Therefore : 

A, = co-+ = [&I + cB)-p, 

Al = -3c,c,-+ =$(l + C?) [-(A + &)I-+, 

A, = c,3 

(2.37) 
. 

A4cC;+ = [-(A + &)I-+ -2 1 3. 7r [A(4 - 6c + 4c2 - 3c3) 

+ B(4c - 6c2 + 4c3)] [$(A + cB)]-’ - $&,;l;3;)2;~+-c;;;; 
. . 

A, = . . . . 

* From (2.30) we have 

and hence 

dz = 2 fA,Tf(m-2)dT 
nt=0 

(0’1 

s 

,0+.0+.0+, 
dz 

:A, 
s 

dr 
PC 
T+(m+ 1) - = ZaiA,, 

5 

where (O+) and (O+, O+. O+) denote respectively a positive single circuit around .z = 0 and the corresponding triple circuit 
around T = 0. A, is the coefficient of z-’ in the z expansion of ~-+(~+l). But 

T-f(m+ 1) = Z-lm+ 1) (cO + cl__ + c$ + pm+ 1) 

and hence A, is the coefficient of z” in (cO + clz + c2z2 + .)-~m+l). 
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It may be easily shown* that 3d, and 3e, are respectively the coefficients of z, in the products 

CO 

(co + CIZ + c*z2 + . .)-*(n+l) 
a 

C. 
-Jz” 

n=o 

(co + c1z + c2z2 + . . .)-cm+ l) mB c < z”. 
n. 

n=o 

Hence, for a2 = c2 = 0, we get 

do = +c,+, 

dl =tcop3 (al -gzao), 

d2 =fcil [-:a1 + (zyaq, 

dj=~c~*{$+~(~~a, - ~~+~($~ao]~, 

(2.38) 

d5 = . . . . 

and together with (2.35) 

do = +[-A + cB)] -+A, 

d, = $[&(A + cB)]-~ 1 + ;sB , 1 
d, = Q--A + cB)]-’ (2.39) 

da = $--A + cB)]- 

da = . . . . 

* The procedure is analogous to that used to determine A,,,. 
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The coefficients e,. as functions of /I,,, may be obtained from (2.38) by replacing u, with ,!I,. 
The final results, in terms of A, B and c, are the following: 

e, = +[*(A + &)I-+B, 

e, =f[&(A+cB)]-+ 
[ 

B1+c2 
-c+~~, 1 

e, = +[&(A + cB)]- ’ [-ggJ+(;gJkl, 

e3 = *[&(A + cB)] - i.pq+; [_g!EJ] 
(2.40) 

and so on. 

The basic quantities A and B, together specifying both the magnitude and direction of the resultant 
surface stress, are now obtained as solutions of the system 

1 = dJ($) + dJ($) + d,l-(1) + &J-($) + . . ., 

1 = e,r(+) + err($) + e,r(l) + e,T($) + . ., 
(2.41) 

where {d,}, {e,}, m = 0, 1,. . . are given by (2.39), (2.40). In summing the right-hand sides of (2.41), 
Euler’s method is applied whenever necessary. Results based on five terms of (2.41) are in excellent 
agreement with the numerical solutions reported by Howarth [lo]. A comparison is given in the 
Table 1. 

The effect of repeated Euler transformations 
on the accuracy of A and B are indicated in 
Figs. 1 and 2. We observe in passing that the 
values of B near c = 0 are in better agreement 
with Howarth’s results if no Euler transforma- 
tion is used on the g-equation. This happens 

Table 1 

c=O c=O~25c=O.5Oc=O.75 c=lOO 

A = f”(o) 1.227 1.245 1.265 1.289 1.315 

A = j-“(o), 
Howarth 1.233 1.247 1.267 1.288 1.312 

B = g”(0) 0.585 0.838 1.014 1.172 1,315 

B = g”(o), 
Howarth 0.570 0.805 0.998 1.164 1.312 

because when c = 0 the g-equation (2.15) is 
homogeneous and the resultant series converges 
rapidly. (As is well known, Euler’s transforma- 
tion does not necessarily improve the converg- 
ence of a convergent series.) 

3. Heat transfer 
The integration of the energy equation (2.16) 

is straightforward. Clearly, this equation implies 
that 

where 

and 

F = j cf + cg) dz: 
0 
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Integrating once more and using the condition where the coefficients A,,, are given by (2.37). 

e(O) = 1 we obtain The last integral may be evaluated in terms of 

8= 1 +jBbe-P’Fdz’. 

incomplete gamma functions. Now, the essential 
(2.42) quantity for heat-transfer calculations is &. The 

0 particular form, 

An equivalent expression in the z variable is - Pr+ 

8 = 1 + 5 13; edPrr’. 3 mzo A,f*(m-2) dz’ 

e; = (2.44) 

(2.43) A,,, Pr-m’3 r[(m + 1)/i] 
0 

I.32 

I.28 

I.26 
A 

I.24 

I.18 
TRANSFORMATIONS, BOTH f AN0 
TRANSFORMATIONS ON f,NONE 0 

0.20 0.40 0.60 0.80 I.00 
c 

FIG. 1. 

1.25 

0.85 

- - --- 
0.65 

2 EULER TRANSFORMATIONS. BOTH f AN0 
- - -- I EULER TRANSFORMAT0NS. BOTH f AND g 
- .- 2 EULER TRANSFORMATIONS ON t. NONE ON 

0.55 y / I I I I I I 

0.25 0.50 0.75 I 00 
c 

FIG. 2. 
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is deduced from (2.43) and the condition lim 
;-+a, 

B(z) = 0. We prefer the equivalent expression 

-3LPr+ 

e;= a, A, r(+, 
(2.45) 

c 

A,,, J-[(m + U/31 p;m;’ - 
A0 U+, 

m=O 

lending itself more readily to a comparison with 
the work of Chao and Jeng [13] in the special 
cases c = 0, 1. A few values of the coefftcients 
A,/A,. r[(m + 1)/31/T(j) and 3/A, r(i) are given 
respectively in Tables 2 and 3. 

For c = 0 and 1, the slight differences between 

our coefftcients in Tables 2 and 3, and those 
reported in [13] are attributed to the fact that 
we solve the equations of motion to obtain the 
values forf”(0) whereas Chao and Jeng take the 
values from available numerical solutions. The 
influence on 0; is, however, quite small. For 
Pr = 1 we obtain for c = 0,0.25, 0.50, 0.75, and 
1.0: -0; = 0~5718,0~6172,0~6639,0~7118.0~7589. 
the variation being practically linear with c. 
Chao and Jeng give respectively, for c = 0. 1, 
0; = - 0.5695 and f10 = - 0.7637 ; the numerical 
solution due to Sibulkin [14] for c = 1 is 0; = 
-0.763. Table 4 presents a comparison of our 
results and those of [14] for c = 1 and Pr = 

0.6, 1.0, 10. Figure 3 then indicates the variation 
of - 0; with c for variable Prandtl number. 

Table 2 

in=0 m=l m=2 m=3 m=4 

c=o 1.0 0.11653 OQ4464 0001607 - 000692 

c = 0, Chao 1.0 0.11583 0+I410 OQO118 oGOO2o 

c = 0.25 1.0 009870 0.03209 0003212 -0GO413 

c = 0.50 1.0 0.08974 002618 OGO6633 - OGOO64 

c = 0.75 1.0 0.08524 0.02389 0+0853 OQOl78 

c = 1GO 1.0 0.084581 0.02338 0GO903 OQO318 

c = 1GO. Chao 1.0 0.08460 0.02352 0.009 11 oGOO2 1 

Table 3 

c=o c = 0.25 c = 0.50 c = 0.75 c = 100 

0.6609 0.8501 
0.6978 0.7448 0.7968 

0.6608, Chao 0.8500, Chao 

Table 4 

Pr 0.6 1.0 10.0 

--e& [14] 0.625 0.763 1.76 

- 0;. [equation (2.45)] 0.62 1 0.759 1.75 
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0 I 

0 O-25 050 075 I.00 
c 

FIG. 3. 
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R-es huations du mouvement et de l’tnergie qui regissent l’tcoulement g&&al tri-dimensionnel 
d’un fluide incompressible prbs d’un point d’arret sont integrbs analytiquement. Le frottement local et le 
transport de chaleur sont dCtermints lorsque la surface est isotherme. Chaque fois que cela est possible, gs 
rCsultats sont comparts avec les solutions numeriques disponibles et l’on a trouvk qu’ils sont extrdmement 
p&is. 11s montrent que la mtthode asymptotique de rtsolution des tquations de la couche limite garde 
sa prCcision lorsqu’on I’applique a un systbme d’kquations non linkaires coupltes. en faijont bien attention 

de sommer les sCries divergentes par la mtthode d’Euler. 

Z-m-Die Bewegungs- und Energiegleichungen, welche die allgemeine dreidimensionale 
StrGmung eines inkrompressiblen Mediums nahe dem Staupunkt kennzeichnen werden analytisch in- 
tegriert. Oberflgchenreibung und W%rmeiibergang werden iirtlich bestimmt bei isothermer Oberlliiche. 
Soweit maglich werden diese Ergebnisse mit verfiigbaren numerischen Ltisungen verglichen, wobei sich 
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ihre hohe Genauigkeit zeigt. Die asymptotische Losungsmethode der Grenzschichtgleichungen behalt 
ihre Genauigkeit bei. wenn sie auf ein System gekoppelter nichthnearer Gleichungen angewandt und, wenn 
der Summierung divergenter Reihen nach der Euler-Methode besondere Sorgfah gewidmet wird. 

AHHOT~~SI-~I~OBO~UTCH~H~JIUTU~~CKO~ rinTerp&iposaHae ypaBneHai~BUmeHURUaHeprUU 

AJIH TpexMepHoro Te'IeHUR HeCmUMaeMO& WURKOCTU u6nnaa KpUTmeCKoti TOYKU. &WI 

U30TepMSWeCKOt llOBepXHOCTM HaiAeHE4 JIOKaJlbHble KO3~C@~UeHTbI TenJIOO6MeHa U TpeHWK. 

nOJIyqeHHlde pe3yJlbTaTbl CpaBHUBaIOTCK C U3BeCTHblMU WiCJleHHblMU pelLleHUFiMU, IIpU'leM 

COOTBeTCTBUe OKa3WIOCb XOpOlUUM. YCTaHOBJleHO, 'IT0 aCUMIITOTWIeCKUfh MeTOA pel.IleHUK 

ypaBHeHUi UOrpaHUYHOrO CJIOR AaeT TO=iHble pe3yJlbTaTbl. AJiR CUCTeMbI ABOttHblX HeJ-iUHefi- 

IibIX ypaBHeHd IlOrpaHU'lHOrO CJlOK,OAHaKO CJIeAyeT TWaTeJlbHO IIpOBOAUTb CyMMUpOBaHUe 

pacxoAawerocn prrAa MeTonoM 3lhepa. 


