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Abstract-—Equations of motion and energy governing a general three-dimensional flow of an incompressible

fluid near a stagnation point are integrated analytically. Local skin friction and heat transfer are deter-

mined when the surface is isothermal. Whenever possible, these results are compared with available

numerical solutions and found to be highly accurate. They show that the asymptotic method of solution

of the boundary-layer equations retains its accuracy when applied to a system of coupled nonlinear
equations, proper care being taken in summing divergent series by Euler’s method.

NOMENCLATURE

constants related to x, y velocity
components of irrotational flow,
equation (2.9);

c, geometric parameter, ¢ = b/a;

19 dimensionless velocity functions,
equation (2.11);

s coefficients related to elements of
length in an orthogonal system,
i—1,2, 3;

Ds static pressure;

P, stagnation point on surface S,
origin of coordinate system;

Pr, Prandtl number;

S, surface;

T, temperature;

u, v, w, x, y, z velocity components in the
boundary layer;

Uu,v, x, y velocity components of the
main stream;

X, Y, Z, local orthogonal coordinate

system on S;
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P

z¢, = (a/v)*, dimensionless coordi-
nate in the direction of local
normal.
Greek symbols
En, L, local orthogonal coordinate
system (different from x, y, z);
v, kinematic viscosity;
P, density;
T, an independent variable, equa-
tion (2.29);
8, dimensionless temperature;
equation (2.13).
Subscripts
w, refers to surface values;
0, refers to values at edge of bound-
ary layer.

I. INTRODUCTION

MEKSYN has shown in a series of papers that the
asymptotic method of solution of the boundary-
layer equations offers decided advantages over
others; while approximate, this analytical and
rather general approach to the integration of the
equations of motion and energy has proved to
yield highly accurate results, such accuracy
being assessed by direct comparison with the
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corresponding numerical solutions. Following
up the basic work* [1, 2], Meksyn has success-
fully applied the procedure to determine the
flow about an elliptic cylinder [3] and retarded
incompressible flow past a semi-infinite plate[4];
a simple example of a compressible flow is
discussed in [5]. An improvement of the method
is contained in [6]. In his later papers [7, 8],
Meksyn considered flows with variable physical
properties demonstrating that (at least for simple
types of property variations) the asymptotic
method retains its accuracy there as well.

One purpose of this paper is to indicate the
accuracy of the asymptotic method in solving
systems . of nonlinear differential equations in
contrast, for example, to [1, 2] that deal with a
single equation of the Falkner-Skan type.
Partly for this reason and in order to have a
ready comparison with corresponding numerical
solutions, we consider a general three-
dimensional flow of a viscous incompressible
fluid in the vicinity of a stagnation point on a
regular surface S. Numerical solutions providing
the standards for accuracy are due to Howarth
[10].

Recent interest in stagnation point heat
transfer has provided the motivation for extend-
ing the work by considering the energy equation
as well. The known solutions for plane and
axisymetric flows are two special cases covered
herein from a more general point of view.

II. ANALYSIS

1. Basic equations and the associated boundary
value problems

Consider a steady three-dimensional laminar
flow of an incompressible viscous fluid over a
regular surface S. Dissipation effects are assumed
to be negligible and all physical properties of
the fluid are taken as constant. Under these
conditions, the boundary layer equations ex-
pressing the principles of conservation of mass,

* The reader may also wish to consult Meksyn’s book [9]
containing a more complete bibliography of pertinent
papers than that given herein.
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linear momentum and energy in a body-
oriented orthogonal coordinate frame take the
form

0 0 ow
éz(hzu) + Ey—l(hlv) + hlhza_C = 0, (21)
wou vou  ou w Ohy v Oh
h oot " hyon  Vor T hih,0n | hih, 0C
1 op u
= T omaeTlan B
udv vov ov  u? 0h, uv Oh,
b tw oty T2
not hyon TV Wk, on | hyh, 0C
1 dp 0%
L SN 2.
phyon ' aC% (23)
; 2
uoT voT or v &°T (2.4)

hE mo o T Pral

where &, n are coordinate curves on S and ¢
is measured in the direction of the local normal
positive outward; the corresponding velocity
components are u, v, w and h,, h,, hy are the
usual coefficients related to a length element.
T, p, p, v and Pr denote respectively the tem-
perature, pressure, density, kinematic viscosity
and the Prandtl number.

Now, it may be easily shown [10] that in the
vicinity of P = (0, 0, 0)}—a stagnation point on
S—the system (2.1){2.4) may be replaced with

ou 0v ow
et = = 2.
ax+8y+0c 0, (2.5
6_u+v@+w@_UQH+V6_U+v@
0 dy .  ox dy a2’
(2.6)
ua—v—i-va—v+wa—v—U‘—aK+V6—V+v€2—‘i
dx ' dy a7 ox dy ac
(2.7)

2
u—61+ oT oT v *T 28

ax Ve TR Thar

where the new coordinate axes Px, Py (obtained
by rotating PZ, P#n) are so chosen that the
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irrotational mainstream has the components

U = ax, V = by, 29

a, b being constants. In other words, the flow
near the stagnation point may be computed as
if the surface were a plane, (x, y, ) forming a
suitable Cartesian  coordinate  frame.
Accordingly, we shall henceforth confine our
attention to the system (2.5)-(2.8) subject to the
following boundary conditions:

u(x, y, 0) = v(x, y, 0) = w(x, y, 0) = 0,
T(x, y,0) = T, = const.

lim u(x,y, {) = U, lim v(x,y,{) =V, ¢ (2.10)
{-+

{~ o )
lim T(x,y,z) = T,, = const.

[~

We seek solutions where u, v are of the form

u=uaxf'(z), v=byglz); (2.11)
z = (a/v}¥¢ is a new independent variable and
"= d/dz.

Equation (2.5) and the boundary conditions
(2.10) imply that a compatible representation for

wis
v\
w= — (E) (af + bg). 2.12)
Introducing a new dependent variable
T-T.
g=—-2 1
T,—-T, @13)

and using (2.11), (2.12), it follows from (2.6)2.8)
that

"+ (f+epf=f"-1, (2.14)
g"+(f +cg g’ =clg’ -1, (2.15)
0" + Pr(f+ cg) 0 =0, (2.16)

where ¢ = b/a is a parameter. (Without loss of
generality we may limit our consideration to the
range 0 < ¢ < 1). Of course, (2.16) implies that
0 = 0(z) only.

The boundary conditions corresponding to
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(2.10) are:
JF0) = f"(0) = g(0) = g'(0) = 0,
00y =1;
lim f'(z) = 1, lim g'(z) = 1, (217
lim 6(z) = 0.

The system (2.14)«2.17) has several interesting
properties. We note first that for any given
value of the parameter c, a solution (2.14)2.17)
in fact satisfies the full Navier—Stokes equations
expressed in a Cartesian coordinate system.*
[To see this, observe that (2.14)(2.17) remain
unchanged when v V24, v V?v and v/Pr V2T
replace respectively the last three terms on the
right-hand sides of (2.6), (2.7) and (2.8).] When
¢ =1, clearly f = ¢ and (2.14}+2.17) give the
solution for a stagnation point flow on a body
of revolution.

If ¢ =b =0, we recover the classical two-

-dimensional flow. The situation is different if in

(2.14)42.16) we take the limit as ¢ approaches
zero. The resultant equatiqns,

fNI +ff// =frz _ 1,
g/n +fg/r - 0’
0" + Prf@ =0,

are then identical to those governing the flow
near the stagnation point (line) on a circular
cylinder, unbounded in the y-direction with its
axis inclined to the mainstream at angle
o = arctan V/U. (Because our procedure is
formal, there is no reason to expect that V
is of the form (2.9). In fact V is constant.)
Observe that the chordwise flow is unaffected
by the spanwise motion (the g-flow). This
situation typifies the so-called “‘independence
principle” exploited for example in the papers

* We have an immediate generalization of the well
known two-dimensional case. The potential flow is now
U =ax, V =by, W= — (a + b)z and the solutions of the
equations of motion, being of the boundary-layer type,
join this flow (up to the displacement effect) at infinity. The
{-component of the momentum equation determines then
the {-dependence of the pressure.
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by Sears [11] and Gortler [12]. Finally, the
temperature field is independent of the g-flow
and formally identical to it when Pr = 1.

2. Integration of the transformed equations of
motion
We turn now to the integration of the coupled
nonlinear one parameter system (2.14), (2.15)
subject to (2.17). The functions f, g are re-
presented by the series

2]

N b
fl2) = E a—",Z". glz) = E — 2"
n! n!

n=2 n=2

(2.18)

the boundary conditions on f, g suggesting that
both start with n = 2. Upon substituting (2.18)
into (2.14), (2.15) and collecting powers of z
we find the first few coefficients:
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where
F2) = [(f + cg)dz.
0

It follows now from (2.20), (2.21) that [, g”
are of the form

(2.22)

fr=e T2, g =eFra (223
where
$(z) = Z a—,z K(z) = ~B—"'z" (2.24)
n. n!
n=0 n=0

are “‘slowly varying” functions; the latter is
implied by the asymptotic solutions of (2.14),
(2.15). The coefficients «,. f, are obtained in a

a,=A, a3=-1, a,=0, a5=(A>—cAB)....
b, = B, by = —c, by =0, bs=—(AB — cB%....
To obtain further terms it is convenient to use the recursive formulae
k—3)k—4 (k—4)k -5 1.2.1
a, = (k — 3)' [—azak_3—m - a3ak_4T(k_—4)!— —_ ... ak_3a2m
(k — 3k —4) (k — H(k — 5) 1.2.1
_.cbzak_3 ‘m‘* - Cb3ak_4 ‘_3’(1{_—4)! - ... Cbk_3a2 m _19)
2(k — 3) 3k — 4) k—3).2
T atb-s g Ty T Bte g gy T S
and
k- 3)k—-4 tk —4)k —5) 1.2.1
bk = (k - 3)' I:—azbk_3—2*'m - a3bk_4w - .. ak_3b2m
k —3)1k—4 k -4k -9 1.2.1
—hob s g T b T T e T
2k — 3)! 3¢k — 4) k—-3.2
+ cbzbk_3—-2!(k m_— + cb3bk_4————3!(k 4 + ...chy_3b, -3 3)!2!],

valid for k = 4.

We consider for the moment (2.14), (2.15) formally as a linear system for f”, g” and hence write

fu(z) = Ae F& _ o~ F@a) j(l _f,z) eF(z/) dz’,
0

g'(z) = Be F@ — ¢~ F j ol —g'")efdz .
0

(2.20)

(2.21)
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straightforward way from (2.23) and (2.18).
To get a, we write

[« o]

nn—1 ,_, o,
a z = —z
: : " ! Z :n!

n=2 n=0

(2.25)
Z" + ﬂ ,

expand both sides and compare powers of z.
The results are

0

1
X exp [— Z (a, + cb,,)(n D1

n=2

ao = az = A,
Ay = a3 = —1,
a2 = a4 = 0,
(2.26)
a3y = as + agla, + ch,) = 24?,
4!
0y = ag + §d1(¢12 + ¢b,y) + aglas + cby) =
—(74 + ¢B),

where the last equalities follow from (2.19).
Similarly, expressions for S, are found to be

Bo=b,=B,
Bi=by= —c
ﬁz=b4=0’

B3 = bs + Bola, + cb,) = 2cB?, 227)

4!
Bs = be + 3‘,51(02 + cb,) + Bolas + cby) =

—(7Bc? + Ao

The velocity field is deduced by integrating
(2.23) which amounts to the evaluation of the
integrals

@) = e () dz',
0
g ()= fe'”z/’ K(z' ) dz'.
4]

(2.28)

This is done by the method of steepest descent.

419

The integrals (2.28) are transformed as follows:
we set

Fo)=2* Y cu" =T, (2.29)
m=0
express z as a series in
Ap
z= E 7 qimtD (2.30)
m+1

and hence obtain
[ dz.,
f=|e o) Sodr!
dr

0

g = fe"'x(z) 4z 4o (2.31)
dt
0
With
¢(z)¥ =1 z d, ™3,
dr
m=0
there follow the desired forms of the integrals,
fr=Je "t Y, d,tm3dr.
0

m=0

'

_ —t -3 & 'm/3
g =fe "ttt Y e, v dr

m=0

(2.32)

O ey 4

The latter are evaluated in terms of incomplete
gamma functions; for each value of ¢, the
quantities 4, B are obtained from (2.32) and the
conditions lim f'(z) = 1, lim ¢'(z) = 1, that is,

22w zZ—r a0

simultaneous algebraic equations
1= 3 d,Im+ 13},
m=0

1= mzo e, T[(m + 1)/3], (2.33)

for A, B with ¢ as a parameter. Of course, {d,,}.
{e,,} must be expressed as functions of 4, B and
¢. For what follows, it shall be convenient to
deduce at this point the appropriate expressions
for {c,}, {4} as well.
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The ¢,’s are determined by 1
Co = 3 (A + cB),
"~ n 1
DX IR P P
. Cz = O,
an obvious consequence of (2.18), (2.22) and (2.35)
. . . 1
(2.29). Straightforward compultatlons yield &= (A — cBY.
Co =173y (a; + cby), P 0 (as + cby).. 1
| € =57 [A(4 — 6¢ + 4c* — 3¢
n = G g 3yt @me2 T ) (234 T Blde — 6% + 4c¥)]
and, since a,,, b,, are known in terms of 4, B, it The A4,,’s are coefficients of z™ in the expression
follows that (co + €1z + 2% + ..)73mtDx (236)
Therefore

Ag=co "t =[HA + cB)] %,
Ay = =307  =5(1 + 2 ) [$(4 + cB)]7%,

Ay = cieg? = [F(1 + AP [HA + cB)] 3,
Ay =5t [—— gz—z - 184T0 C—:)s] = [}(A4 +cB)]*.
. {_ i.i'(A — cBP[KA + cB)] ! + %41—0 %( ; i 53)3} =30
Ay = c5? [— gi’l; + 4900223 + Zg < ) ] [3A4 + cB)];‘} {— ;.%[A@ — 6 + 4c* — 3¢?)

P L, 40 1 (1 +AA-cB?  TIO[ (1 + ]
+ B(4c — 6¢* + 4c*)] [H(4 + ¢B)] 5 "[1/3')(A+CB)]2+243 AT B[

A5=....

* From (2.30) we have

dz= Y 44, D4

and hence

0*) (0+.0%*.0%)
dz L dt .
;m =13 Am ? = 2mid e
where (0*) and (0%, 0*. 07) denote respectlvely a positive single circuit around z = 0 and the corresponding triple circuit
around t = Q. 4,, is the coefficient of z™! in the z expansion of = #™+1) Byt
TTHmID = gD (0t cyz + 2% 4 .. )THHD

and hence 4, is the coefficient of z™ in (cy + ¢,z + ¢;22 + .. ) 7w+ D),
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It may be easily shown* that 34, and 3e,, are respectively the coefficients of z,, in the products

and

o]

_ E o
(co + €1z + c2% + .. )~ ¥m*D 2"
n!

n=0

[e 8]
(co + C1z + 2% + ..)"¥m+ D &;z".
n!

n=0

Hence, for a, = ¢, = 0, we get

— 1.
do—'§co*’

1 _
dl =§C0 '}(al

1 _
d2=§c01 I:_

3!

1
d3 = §C0—i{ﬁ +

2¢,,
3¢, O

— 0y +\— %ol »
C Co

_lfﬂza ic3+140 o\’
9 \co) T 13¢, " 81 \eo) Xl

1 a, Sca 5¢5 220 (c,\?
d, = Lo-#l% 200 |26 2200
+=3% {4! 3¢, 3! [3c0+81 (c0> ]“‘
_ca , A0ciey | TI0 for)®
" [ e T 9 @ 2 \e) |f
d5=....
and together with (2.35)

do = 4[H4 + cB)] A,

dy = §[HA + cB)]} [— 1+

2 2\ 2
dy = 4[XA + cB)]™! [—1 1+e +(11+C>A],

A1+ c?
6 A+ cB)

44+cB \44+cB

3 79 |16\4 + ¢B

dy = 3[4 + cB)] "t {A_z + 14 |:1 (.li)z]

C[A(Ld=cBR) 10 10+
3\120 A+ cB 81 44+ cB

JJ

(2.38)

(2.39)

* The procedure is analogous to that used to determine A,,.
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The coefficients e, as functions of 8, may be obtained from (2.38) by replacing a,, with £,
The final results, in terms of 4, B and c, are the following:

eo = 3[8(4 + ¢B)] *B.

B1+c2]

e, = 3[4 + cB)]} [—c t S AT Bl

_ ¢ (1+¢2 11+ c%)\?
e = 364 + B [‘z (A+—B)+(zm> B]

B? 14 1 2
es = 444 + cB)]‘*{%+@ [— i( sl

16

A +cB

(2.40)

/]

A (L a=eBr) 140 (1 Y
3\120 4 + cB 81 44+ cB )

and so on.

The basic quantities A and B, together specifying both the magnitude and direction of the resultant
surface stress, are now obtained as solutions of the system

1=d, T3 + dTG) + d,T (D) + 4IE) + ...,
1=¢e3) + TG + e, (1) + esTE) + ...,

where {d,,}, {e.}, m = 0, 1, ... are given by (2.39), (2.40). In summing the right-hand sides of (2.41),
Euler’s method is applied whenever necessary. Results based on five terms of (2.41) are in excellent
agreement with the numerical solutions reported by Howarth [10]. A comparison is given in the

(2.41)

Table 1.

The effect of repeated Euler transformations
on the accuracy of 4 and B are indicated in
Figs. 1 and 2. We observe in passing that the
values of B near ¢ = 0 are in better agreement
with Howarth’s results if no Euler transforma-
tion is used on the g-equation. This happens

Table 1

c=0 ¢=025¢=050 ¢c=075 ¢c=100

because when ¢ =0 the g-equation (2.15) is
homogeneous and the resultant series converges
rapidly. (As is well known, Euler’s transforma-
tion does not necessarily improve the converg-
ence of a convergent series.)

3. Heat transfer

The integration of the energy equation (2.16)
is straightforward. Clearly, this equation implies
that

A=f"0) 1227 1245 1265 1289 131§ 6 = Gpe T .
A = f"(o), where

Howarth 1233 1247 1267 1288 1312 do

0y = —
B=g"0c) 0585 0838 1014 1172 1315 dz |.-9
and

B = g"(0).

Howarth 0570 0805 0998 1164 1312
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Integrating once more and using the condition

6(0) = 1 we obtain

z

0

1+ [6e PFdz.
o

(2.42)

423

where the coefficients A4,, are given by (2.37).

The last integral may be evaluated in terms of
incomplete gamma functions. Now, the essential

quantity for heat-transfer calculations is 8,. The

particular form,

An equivalent expression in the t variable is _ppt
T 3 06 = 0 . (244)
0=1+ jeg e P % Z Amt'*("“” dt’ (2.43) % Z A Pr—m3 F[(m + 1)/3]
0 m=0 m=0
132 /ﬁ:
P
1-30 v ///
/’/ P <
L -~
128 P - //
P - /
1-26 Pl /
- - -
A - /// -
124 = =
/‘d’
L
1-22
1-20
HOWARTH [i0]
————— 2 EULER TRANSFORMATIONS, BOTH 7 AND ¢
— — — — | EULER TRANSFORMATIONS, BOTH 7 AND ¢
1118 ——-—— 2 EULER TRANSFORMATIONS ON 7, NONE ON g
N I O O T
020 0-40 0-60 0-80 1-00
4
FiG. 1.
1-35
i-25 4
v
115 /
P
vd
105 A
8 7
Z
095 f/
7
. bz
085 £
7
/ Y
075 24
Py
/‘/Y HOWARTH [10]
065 // ————— 2 EULER TRANSFORMATIONS, BOTH 7AND ¢ _ |
7 — — —— | EULER TRANSFORMATIONS, BOTH 7 AND ¢
—— - —— 2 EULER TRANSFORMATIONS ON ,NONE ON g
025 050 075 1-00

c
FiG. 2.
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is deduced from (2.43) and the condition lim

z—r @

0(z) = 0. We prefer the equivalent expression

1
-3___—___p +
A, Td)

0 ]

AnTlm + 1] s
Z:, A, )

0y =

(2.45)

lending itself more readily to a comparison with
the work of Chao and Jeng [13] in the special
cases ¢ = 0, 1. A few values of the coefficients
A,/Ao.T[(m + 1)/3])/T(5)and 3/4,T(3)are given
respectively in Tables 2 and 3.

For ¢ = 0and 1, the slight differences between

A. A. HAYDAY and D. A. BOWLUS

our coefficients in Tables 2 and 3, and those
reported in [13] are attributed to the fact that
we solve the equations of motion to obtain the
values for f'(0) whereas Chao and Jeng take the
values from available numerical solutions. The
influence on 6 is, however, quite small. For
Pr = 1 we obtain for ¢ = 0, 0-25, 0-50, 0-75, and
1-:0: — 65 = 0-5718,0-6172,0-6639,0-7118.0-7589,
the variation being practically linear with c.
Chao and Jeng give respectively, for ¢ =0, 1,
0y, = — 05695 and 6, = —0-7637; the numerical
solution due to Sibulkin [14] for ¢ = 1 is 0, =
—0:763. Table 4 presents a comparison of our
results and those of [14] for ¢ = 1 and Pr =
0-6, 1-0, 10. Figure 3 then indicates the variation
of — 6, with ¢ for variable Prandtl number.

Table 2
m=20 m=1 m=2 m=3 m=4
c=0 1-0 0-11653 0-04464 0001607 —0-00692
¢ = 0, Chao 10 0-11583 0-04410 0-00118 0-00020
c =025 10 0-09870 0-03209 0003212 —0-00413
¢ =050 1-0 008974 002618 0-006633  —0-00064
¢ =075 10 0-08524 0-02389 0-00853 0-00178
¢ =100 10 0-084581 0-02338 0-00903 0-00318
¢ = 100, Chao 1-0 0-08460 002352 0-00911 0-00021
Table 3
c=0 c =025 ¢ =050 c =075 c =100
06609 0-8501
—_—— 06978 0-7448 0-7968 e
0-6608, Chao 0-8500, Chao
Table 4
Pr 06 10 100
~ 0, [14] 0625 0763 176
—65. [C_quation (2.45)] 0-621 0759 175
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. Résumé—Les équations du mouvement et de I'énergie qui régissent ’écoulement général tri-dimensionnel

d’un fluide incompressible prés d’un point d’arrét sont intégrées analytiquement. Le frottement local et le

transport de chaleur sont déterminés lorsque la surface est isotherme. Chaque fois que cela est possible, ces

résultats sont comparés avec les solutions numériques disponibles et ’on a trouvé qu’ils sont extrémement

précis. Ils montrent que la méthode asymptotique de résolution des équations de la couche limite garde

sa précision lorsqu’on 'applique 4 un systéme d’équations non linéaires couplées, en faisont bien attention
de sommer les séries divergentes par la méthode d’Euler.

Zusammenfassung—Die Bewegungs- und Energiegleichungen, welche die allgemeine dreidimensionale
Stromung eines inkrompressiblen Mediums nahe dem Staupunkt kennzeichnen werden analytisch in-
tegriert. Oberflichenreibung und Warmeiibergang werden ortlich bestimmt bei isothermer Oberfliche.
Soweit moglich werden diese Ergebnisse mit verfiigbaren numerischen Losungen verglichen, wobei sich
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ihre hohe Genauigkeit zeigt. Die asymptotische Losungsmethode der Grenzschichtgleichungen behilt
ihre Genauigkeit bei, wenn sie auf ein System gekoppelter nichtlinearer Gleichungen angewandt und, wenn
der Summierung divergenter Reihen nach der Euler-Methode besondere Sorgfalt gewidmet wird.

AnrnoTanma—IIpoBOUTCA AHAIMTHIECKOE HHTErPHPOBaHMEe YDABHEHUH (BMKEHUA 1 BHEPTHHA
A TPEXMEPHOIO TEeUEHMA HECHKHMAaeMON KujKocTH BGIMBM KpmTHyeckoit Touku. [las
U30TEPMUUECKON NMOBEPXHOCTH HAlIeHH JOKAJIbHHE KO5QQUIUUEHTH TernI000MeHa 1 TPeHNns.
Tlony4eHHble pe3yJbTATH CPAaBHUBAIOTCA C M3BECTHEIMM YMCIEHHBIMH DELICHUAMHU, NpPUYEM
COOTBETCTBHE OKA3aJIOCh XOPOLIMM. YCTAHOBJIEHO, YTO ACHMITOTUYECKMH METON pelNeHHA
YPaBHEHUHl IIOrpaHUYHOIO CJIOA JAaeT TOUHHE Pe3yJbTAaTh ANA CHCTEMH JBOMHHX HeJUHEH-
HEIX ypaBHEeHH} IOrPAaHMYHOrO CJIOA, OTHAKO CJefyeT THIATeJIbHO MPOBOMUTL CYMMUPOBAHME
PaCXOAAIIETOCA PARA METOIOM Jitnepa.



